Programme de colle 14

Pelletier Sylvain PSI, LMSC

Cours:

Chapitre 5 Réduction des endomorphismes

I Éléments propres **Rappels I.1 Valeurs et vecteurs propres I.2 Sous-espace propre **Exemples **Propriétés des sous-espaces propres I.3 Valeurs propres et polynôme d'endomorphisme

II Polynôme caractéristique II.1 Définition II.2 Lien avec les valeurs propres ★Cas d'une matrice triangulaire par bloc II.3 Coefficients II.4 Mutliplicité d'une valeur propre

III Diagonalisation en dimension finie III.1 Définitions ★Théorème spectral III.2 Lien avec la dimension des sous-espaces propres III.3 Lien avec le polynôme caractéristique III.4 Calcul effectif de la diagonalisation

Rappels sur les déterminants. Déterminants de Van der monde. Calcul du polynôme caractéristique d'une matrice compagnon.

Techniques:

- Tout exercice d'algèbre linéaire de première année, en particulier :
 - équations linéaires,
 - hyperplans et formes linéaires,
 - polynômes d'endomorphisme,
 - calcul de puissance de matrices : par polynômes annulateurs, par Newton, par réduction, etc.
- Définition du chapitre réduction.
- Exemple de calculs d'éléments propres :

$$\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \in \mathscr{M}_2(\mathbb{R} \text{ ou } \mathbb{C}) \qquad \text{projecteur et symétrie}$$

$$f \in \mathscr{C}^\infty \mapsto f' \qquad (u_n) \in \mathbb{C}^\mathbb{N} \mapsto (u_{n+1}) \qquad P \in \mathbb{K}[X] \mapsto P(X+1)$$

• Calcul des éléments propres d'une matrice 3×3 .

Calcul du rang de $A - \lambda I_3$ par des opérations élémentaires (réduction de Gauss avec un paramètre). Exemple de :

$$A = \begin{pmatrix} 4 & 3 & 3 \\ 4 & 3 & 6 \\ 4 & 6 & 3 \end{pmatrix}$$

- Montrer que les sous-espaces propres sont en somme directe. La démonstration doit être connue.
- Informations sur le polynôme caractéristique : $\chi_A = X^n Tr(A)X^{n-1} + \cdots + (-1)^n \det(A)$.
- Calcul du polynôme caractéristique par ses informations.
- Lien entre la dimension des sous-espaces propres et l'ordre de multiplicité d'une valeur propre.

Relation : $1 \leq \dim(E_{\lambda}) \leq m_{\lambda}$.

- Condition de diagonalisation :
 - diagonalisation et dimension des sous-espace propre,
 - diagonalisation et polynôme caractéristique,
 - théorème Spectral
- Calcul effectif de la réduction d'une matrice de taille 3×3 : calculer χ_A , les valeurs propres, les sous-espaces propres, faire la réduction. En déduire A^n .

Pour le calcul des sous-espace propre, on attend une résolution rapide des systèmes linéaires homogènes : d'une relation sur les colonnes, on trouve facilement un ou des vecteurs solutions.

Exemple de :
$$\begin{pmatrix} -1 & 2 & -1 \\ -3 & 4 & -3 \\ -4 & 4 & -4 \end{pmatrix}$$

• Calcul de χ_A en utilisant les coefficients connus et quelques racines connues.

Exemple de raisonnement :

 Certaines valeurs propres peuvent être « vues » sur la matrice (en particulier 1 et 0). Certaines sont trouvées avec une équation que vérifie A.

- On trouve alors la dimension des sous-espaces propres et on utilise $\dim(E_{\lambda}) \leq m_{\lambda}$.
- On utilise les relations « produit des valeurs propres » et « somme des valeurs propres » (lorsqu'on travaille sur C ou lorsqu'on sait que le polynôme est scindé).
- On en déduit χ_A .

Exemple de
$$\begin{pmatrix} 0 & \dots & 0 & \alpha_{n-1} \\ \vdots & & \vdots & \vdots \\ 0 & \dots & 0 & \alpha_1 \\ \alpha_{n-1} & \dots & \alpha_1 & 0 \end{pmatrix}$$

Exemple de la matrice $M=(m_{ij})$ définie par $m_{i,j}=1$ si j=1, j=i ou $j=n, m_{i,j}=0$ sinon.

- Propriétés du déterminant.
- Rappels sur les déterminants.

En particulier:

- le déterminant de Vandermonde
- Déterminant d'une matrice triangulaire supérieure par blocs. (le résultat sans démonstration).